激光写光电子学进展

超高强钢1700MS激光焊接头微观组织 与力学性能

李敏1,荣佑民2,王璐2,徐加俊2*

¹江汉大学智能制造学院,湖北 武汉 430056; ²华中科技大学数字制造装备与技术国家重点实验室,湖北 武汉 430074

摘要 开展了超高强钢1700MS激光焊接工艺研究,对比分析了不同焊接速度时的接头微观组织、显微硬度和力学性能。 结果表明,超高强钢1700MS焊接过程发生了马氏体回火转变,亚临界热影响区(SCHAZ)形成了大量粒状的回火马氏体,其尺寸和数量随着远离焊缝区中心明显降低。受其影响,焊接接头存在严重的软化现象,其最大硬度为609 HV,最小硬度为321 HV,后者仅为前者硬度的52.71%。同时,回火软化导致焊接接头两侧形成了中间软(热影响区)两边硬 (焊缝区及母材)的不均匀组织结构,导致焊接接头在受力过程中力学性能降低。此外,增加焊接速度可降低SCHAZ的回火程度和宽度,从而提升接头力学性能。

关键词 激光技术; 激光焊接; 超高强钢; 回火软化; 微观组织; 力学性能 中图分类号 TG456.7 **文献标志码** A

DOI: 10.3788/LOP222348

Study on Microstructure and Mechanical Properties of Laser Welded Joints for Ultra-High Strength Steel 1700MS

Li Min¹, Rong Youmin², Wang Lu², Xu Jiajun^{2*}

¹Intelligent Manufacturing Institute, Jianghan University, Wuhan 430056, Hubei, China; ²State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

Abstract In this study, the effects of welding speed on the microstructure, microhardness, and mechanical properties of laser welded 1700MS ultra-high strength steels were investigated. Experimental results suggest that the welding process involved martensite tempering transformation, leading to a large number of granular tempered martensite in the sub-critical heat-affected zone (SCHAZ). The size and quantity reduced significantly as the distance from the fusion zone's center (FZ) increased. Due to the tempered martensite, the welded joint had a serious decrement in hardness. With a softening degree of 52.71%, the maximum and minimum hardnesses were 609 HV and 321 HV, respectively. Because of the softening, the structure became uneven with a soft zone (heat-affected zone) in the center and hard zones (FZ and base metal) on the sides. This could cause a decrement in the mechanical properties of the welded joint during the stress process. As a result, increasing the welding speed can reduce the tempering degree and width of SCHAZ, thus improving the mechanical properties of the joints.

Key words laser technique; laser welding; ultra-high strength steel; tempering softening; microstructure; mechanical properties

1 引 言

汽车轻量化发展是提高燃油经济性和减少温室气

体排放最直接有效的方法之一^[1-3]。降低10%的车身 质量可节约4.9%的燃油消耗^[4],但汽车轻量化发展将 会影响其安全性能^[5]。研究表明,车身质量每减轻

收稿日期: 2022-07-19; 修回日期: 2022-08-24; 录用日期: 2022-09-05; 网络首发日期: 2022-09-15

基金项目:湖北省教育厅科学研究计划指导性项目(B2019246)、国家自然科学基金(51905191)、中国博士后科学基金(2021M691113、2022T150235)

通信作者: *xujiajun0811@163.com

第 60 卷第 17 期/2023 年 9 月/激光与光电子学进展

研究论文

100 kg,汽车碰撞安全系数降低 3%~4.5%^[6]。超高强 钢以其高吸能性的优势,在实现汽车轻量化和提高车 身安全性能方面起着非常重要的作用^[78]。同时,激光 焊接以其高效高柔性的优势,成为超高强钢车身薄壁 构件高质高效制造的重要手段^[9]。例如,马氏体钢 (MS)是一种典型的超高强钢,具有极高的抗拉强度, 包括 900 MPa、1100 MPa、1300 MPa、1500 MPa 以及 最高的 1700 MPa 级别。同时,MS 具有很高的屈强 比,各级别屈强比都在 0.85以上^[10]。因此,MS 可大幅 度增加结构件的抗拉强度,提升汽车安全性能,有效降 低司机和乘客在碰撞过程中的伤亡率,同时,减少钢材 的使用量,以更低的成本生产高安全性能的汽车,并且 实现车身轻量化。

MS的主要组织是马氏体(M),少量的铁素体或 贝氏体弥散分布其中^[11]。MS利用连续退火工艺将几 乎所有的奥氏体转变为马氏体,具有非常高的硬度和 强度。淬火后的MS通过回火以提高其延性,即使在 极高强度等级下也能提供足够的成形能力。目前, MS的相关焊接工艺研究较少,仅有少量的电阻点 焊^[1245]和激光焊接^[16]工艺研究。Zhao等^[16]对比研究了DP 钢(600 MPa、800 MPa和1000 MPa)和MS(1500 MPa)焊 接软化现象,发现亚临界热影响区(SCHAZ)软化程度 均随着母材马氏体含量升高而升高。Tamizi等^[1243] 和 Varbai等^[14]分析了不同强度等级 MS(1200 MPa、 1500 MPa和1700 MPa)电阻点焊焊接接头各区域微 观组织形貌变化规律:

1)上临界热影响区(UCHAZ),其峰值温度大于 奥氏体转变终止温度(A_{c3}),焊接过程马氏体全部转变 成奥氏体,并且在富碳奥氏体的高淬透性和高冷却速 度的共同作用下转化为全马氏体组织。 2)临界热影响区(ICHAZ),该区域峰值温度在奥 氏体转变起始温度(A_{cl})和A_{cs}之间,在加热过程中只 有部分马氏体发生奥氏体化,其奥氏体含量随峰值温 度升高而升高,然后奥氏体转变为马氏体并形成马氏 体和铁素体的双相组织。

3)SCHAZ,该区域峰值温度小于A_{e1},在该温度范 围下的马氏体是不稳定的组织,会发生回火现象,在回 火马氏体(TM)中可以明显观察到初生奥氏体晶界、 断裂的板条状形态、板条间和板条内的超细碳化物颗 粒,超细碳化物颗粒的沉淀的成核和增长由Fe₃C硬质 合金中过饱和马氏体的碳扩散控制。

由此可见,目前国内外关于超高强钢激光焊接工艺的研究较少。因此,本文针对超高强钢1700MS(抗拉强度1700 MPa)激光焊接工艺展开,研究焊接速度对接头微观组织和力学性能的影响,相关结果对1700MS车身薄壁构件高质高效激光焊接具有一定的工程和理论意义。

2 试验方法

试验材料为抗拉强度1700 MPa级的冷轧马氏体钢1700MS,是瑞典SSAB钢铁公司强度最高的马氏体钢,该材料在汽车车身加强件上具有很好的应用前景,比如保险杠、汽车底架和新能源汽车电池保护外壳等。1700MS力学性能如表1所示,材料化学成分如表2所示。

表1 马氏体钢1700MS力学性能^[17]

Yield strength $R_{ m p0.2}$ /	Tensile strength	Elongation
MPa	$R_{ m m}$ /MPa	$A_{_{80}}$ / $\%$
1350-1700	1700-2000	3

表 2 马氏体钢 1700MS 化学成分 ^[17]												
Table 2Chemical composition of martensitic steel 1700MS[17]												
Element	С	Si	Mn	Р	S	Cr	Ni	V	Ti	Cu	Al	Fe
Mass fraction / %	0.296	0.20	0.41	0.009	0.003	0.02	0.04	0.01	0.03	0.16	0.044	Bal.

焊接试验设备主要包括:美国 IPG 公司 YSL-30000型光纤激光器,激光波长为1070 nm、最大输出功 率为30 kW;德国 Precitec 公司 YW-50型激光焊接头, 最小光斑直径为0.50 mm;德国 KUKA 公司 IRB-4400 六轴机器人。由于马氏体钢的微观组织以马氏体为 主,焊接过程中母材会发生回火软化现象,且软化程度 随着峰值温度升高而加剧^[18-19]。焊接速度和激光功率 是决定回火软化行为的主要因素,增加速度或降低功 率均可抑制回火软化,反过来降低速度或增加功率会 导致软化程度升高。因此,本文基于回火软化现象研 究焊接速度对焊接接头微观组织、宏观形貌以及力学 性能的影响规律,保持激光功率(4 kW)和离焦量 (0 mm)不变,试样尺寸为100 mm×50 mm×2 mm,工 艺参数如表3 所示。为避免母材焊接过程中发生氧化,

表3 焊接工艺参数^[17]

Table 3	Welding	process	parameters
---------	---------	---------	------------

Welding parameter	Value
Welding speed $/(m \cdot min^{-1})$	2.4,3.3,4.2,5.1,6.0,6.9

采用纯度100% 氩气作为保护气,流量为1.5 m³/h。

在焊接开始前,采用机械打磨和丙酮试剂清洗的 方式去除母材表面的油污、氧化膜及其他杂质。完成 焊接试验后,根据标准金相试样要求,将金相试样进行 镶样、打磨、抛光处理,经4%的硝酸乙醇(硝酸与乙醇 体积比为4:96)溶液浸蚀10s后,利用光学显微镜和 扫描电子显微镜观察焊接接头的微观组织和宏观形 貌;利用硬度计测量焊缝显微硬度,测量位置在焊缝表 面下方1mm处,测量点间距为0.05~0.15mm,载荷

研究论文

为5.0 N,保荷时间为15 s。金相试样通过电火花线切割机在焊缝中间的稳定区域截取,试样尺寸10 mm×5 mm×2 mm,如图1所示。同时,在金相试样两侧截取两个非标准拉伸试样(包括母材),总长为100 mm, 原始标距为50 mm,截面宽度为10 mm。拉伸测试采用日本岛津公司AG-IC 100 kN材料高温持久性能试验机,最大拉伸为100 kN,拉伸速率为1 mm/min。

3 分析与讨论

3.1 焊接接头宏观形貌和微观组织

马氏体钢 1700MS 微观组织形貌如图 2 所示,可以看出,母材微观组织呈轧制态,具有均匀的细晶组

第 60 卷第 17 期/2023 年 9 月/激光与光电子学进展

织,主要由大量马氏体和少量回火马氏体组成。

在激光焊接热循环过程中往往伴随着固态相变, 焊接接头不同位置由于峰值温度的差异,发生不同种 类不同程度的固态相变。本文中的相变产物可通过对 比 $v_{8/5}$ (焊接过程从800℃冷却到500℃的平均冷却速 度)和母材1700MS的马氏体临界冷却速度 C_r 来判断, 若 $v_{8/5}$ 大于 C_r 则所有相产物为全马氏体组织,反之则会 形成其他相产物。其中, $v_{8/5}$ 可根据作者前期的 1700MS激光焊接温度场模拟研究^[17]获取,即提取有 限元模型节点从800℃冷却到500℃的平均冷却速度, 所提取的节点为峰值温度大于700℃的所有节点,其 中6个焊接速度时的最小 $v_{8/5}$ =806℃/s,马氏体临界 冷却速度 C_r (℃/h)可利用Easterling^[20]提出的经验公 式计算,其值为421℃/s,经验公式表示为

 $\log(C_r) = 7.42 - 3.13X_c - 0.71X_{Mn} - 0.37X_{Ni} -$

$$0.34X_{\rm Cr} - 0.45X_{\rm Mo}, \tag{1}$$

式中: X_i (*i* = Mn, Si, Cr, Mo)为相应元素的化学成分 (质量分数)。显然,所有焊接速度下焊接冷却过程只 发生了马氏体转变,表明焊接速度对焊接接头微观组 织的影响较小,仅对各区域[如焊缝区(FZ)、 UCHAZ、ICHAZ]的尺寸具有较大的影响,如表4和 图3所示。

因此,本文以3.3 m/min焊接速度焊接的试样微 观组织为例进行介绍,焊接接头各区域划分如图4所 示,根据组织形貌特点可分为FZ、UCHAZ、ICHAZ 和SCHAZ,其中FZ呈沙漏形态。值得注意的是, 图4和图3(b)为同一焊缝截面,不同之处在于图3(b) 为金相试样腐蚀10s后的图片,而图4为了便于观察

图 2 马氏体钢 1700MS 微观组织。(a) 500 倍光学显微镜;(b) 4000 倍扫描电子显微镜 Fig. 2 Microstructure of martensitic steel 1700MS. (a) 500× optical microscope; (b) 4000× scanning electron microscope

-		-8	,		8 °F · · · ·		
W 11: 1/(: -1)		Upper width /n	ım	Bottom width /mm			
weiding speed / (m•mm)	FZ	UCHAZ	ICHAZ FZ UCHAZ	ICHAZ			
2.4	1.31	0.36	0.13	1.39	0.29	0.13	
3.3	1.18	0.25	0.11	1.22	0.27	0.11	
4.2	1.03	0.20	0.10	1.02	0.22	0.11	
5.1	0.99	0.17	0.10	0.92	0.20	0.09	
6.0	0.94	0.15	0.09	0.87	0.18	0.09	
6.9	0.86	0.14	0.09	0.72	0.17	0.08	

	表 4	FZ、UCI	HAZ 相 I	CHAZ的宽	间度随焊接速	度的变化	
Table 4	Chan	ge of widt	hs of FZ	. UCHAZ	and ICHA2	Z with welding	, speed

图 3 不同焊接速度时的焊缝形貌。(a) 2.4 m/min;(b) 3.3 m/min;(c) 4.2 m/min;(d) 5.1 m/min;(e) 6.0 m/min; (f) 6.9 m/min^[17]

图 4 焊接接头区域划分示意图 Fig. 4 Schematic diagram of welding joint area division

图 5(e)、(f)中的回火马氏体,金相试样的腐蚀时间为 20 s。

进一步,分析各区域微观组织,图5(a)~(f)为图4 中对应位置的500倍光学显微镜图。FZ是母材焊接 过程中熔化再凝固后形成的铸型组织,高淬透性的富 碳奥氏体在极高的冷却速度下转化成全马氏体组织, 如图5(a)所示。与FZ中单一马氏体组织不同,受峰 值温度的影响HAZ不同位置存在较大的组织梯度,包 括UCHAZ、ICHAZ和SCHAZ。UCHAZ的峰值温度 在A。和母材熔点之间,该区域在加热过程中转变为全 奥氏体组织,冷却过程与FZ类似,奥氏体高淬透性和高冷却速率的共同作用下转化为全马氏体组织:根据加热过程中形成的初生奥氏体晶粒大小可将UCHAZ分为粗晶热影响区(CGHAZ)[图5(b)]和细晶热影响区(FGHAZ)[图5(c)],前者峰值温度接近熔点,后者接近Acao ICHAZ的峰值温度在Act和Aca之间,该区域在加热过程中只发生了部分奥氏体转变,并形成了少量仿晶界铁素体,冷却时奥氏体转变为马氏体并形成马氏体和铁素体的双相组织,因此该区域的马氏体体积分数低于UCHAZ,其组织形貌如图5(d)所示。

图 5 焊接接头微观组织(500×)。(a) FZ; (b) CGHAZ; (c) FGHAZ; (d) ICHAZ; (e) SCHAZ I; (f) SCHAZ II Fig. 5 Microstructure of welded joint (500×). (a) FZ; (b) CGHAZ; (c) FGHAZ; (d) ICHAZ; (e) SCHAZ I; (f) SCHAZ II

SCHAZ的峰值温度低于 A_{cl},该峰值温度不足以发生 奥氏体转变,但是由于温度升高碳原子活动能力有所 提升,马氏体内部过饱和碳逐步以碳化物的形式析出, 板条状形态开始破坏并形成超细碳化物颗粒,即为马 氏体回火转变。同时,回火转变程度随着峰值温度升 高而升高,马氏体中碳的过饱和程度不断降低,呈现出 与其他区域完全不一样的回火马氏体组织,如 图 5(e)、(f)中黄白色圆形组织所示,颗粒尺寸和数量 随着远离FZ中心明显降低。

3.2 焊接接头显微硬度

由于不同的微观组织具有不同的性能,焊接接头 各区域组织形态的变化必然会导致焊接接头性能 的变化。作为局部塑性变形抵抗能力的指标,本文以 6.9 m/min焊接速度焊接时的接头硬度为例进行分 析。首先对比图 4 和图 6(a)可知,不同焊接速度下的 焊接接头存在类似特点的微观组织区域,但是各区域 尺寸随着焊接速度的增加明显降低,例如 FZ 的上宽和 下宽尺寸分别由 3.3 m/min时的 1.179 mm 和 1.216 mm 降为 6.9 m/min 的 0.856 mm 和 0.718 mm,降幅分别为 27.40% 和 40.95%。通过分析图 6(b)中维氏硬度曲 线,HAZ存在严重的软化现象,其最大硬度为 609 HV (FZ)、最小硬度为 321 HV(SCHAZ),后者仅为前者硬 度的 52.71%,表明接头各区域性能差异极大。具体 如下:FZ 和 UCHAZ 的显微硬度基本一致,在 583 HV 和 608 HV 之间,略微高于母材的硬度 563 HV,这是由 于母材本身存在一定的回火程度,导致其硬度低于焊 接过程中形成的淬火马氏体;ICHAZ 为回火马氏体 (SCHAZ)和淬火马氏体(UCHAZ)的过渡区域,具有

图 6 焊接接头显微硬度测试结果。(a)硬度测试路径;(b)显微硬度曲线 Fig. 6 Microhardness test results of welded joint. (a) Hardness test path; (b) microhardness curve

研究论文

第 60 卷第 17 期/2023 年 9 月/激光与光电子学进展

最大的硬度梯度,在0.1 mm左右的距离范围内硬度由 336 HV 增加到 561 HV; SCHAZ 的尺寸范围最大(约 为 1.5 mm),最小硬度位置在其与 ICHAZ 交界处,并 沿着远离 FZ 方向硬度值缓慢增加(峰值温度降低,回 火马氏体比例减少),直至接近母材的硬度。由上述分 析可知,焊接接头存在严重的软化现象,其软化程度与 SCHAZ 发生的马氏体回火有关,回火比例越高,硬度 越低。

3.3 焊接接头力学性能

根据如图2所示的接头拉伸试样,对母材和所有 焊接接头拉伸试样进行拉伸测试,每种类型拉伸2次, 共进行14次试验,结果如表5和图7所示。由于 1700MS硬度较高,试样在拉伸过程中夹具易出现打 滑的现象,导致应力应变曲线只有屈服极限强化阶段 和强度极限缩颈阶段比较明显,而弹性变形和比例屈 服极限阶段由于夹具滑动误差较大难以分辨。所有焊 接试样都在热影响区断裂,母材的极限抗拉强度和伸 长率明显高于焊接接头,母材抗拉强度为1726 MPa、 伸长率为8.44%(注:考虑夹具滑动误差,本节所讨论 的应变/伸长率仅便于不同试样的对比分析,不能反映 真实测量结果)。焊接试样的抗拉强度随着焊接速度 升高分别为1232 MPa、1309 MPa、1359 MPa、1395 MPa、1427 MPa,而伸长率无明显变化。产生这种不 均匀拉伸性能的原因是SCHAZ的马氏体回火软化现 象,焊接接头两侧形成了中间软(热影响区)、两边硬 (焊缝区及母材)的不均匀组织结构,导致焊接接头抗 拉强度降低;并且随着焊接速度降低,SCHAZ在尺寸 增加的同时也会具有更高的软化程度,从而使抗拉强 度进一步降低。由此可知,SCHAZ的马氏体回火是 影响焊接接头拉伸性能的主要因素。

表5 抗拉强度随焊接速度的变化

综上所述,在激光焊接热循环作用下,焊接接头 FZ和HAZ由于加热速度、冷却速度以及峰值温度的 不同其组织及性能呈高度不均匀性状态,其力学性能 取决于各区域的微观组织和宏观尺寸,尤其是形成回 火马氏体的SCHAZ。因此,超高强钢1700MS激光焊 接工艺优化应以优化各区域组织不均匀性为目标,在 降低硬质相区/提升软质相区硬度的同时减小硬质相 区/软质相区尺寸。

4 结 论

焊接接头根据组织形貌特点可分为FZ、UCHAZ、 ICHAZ和SCHAZ等四个区域,其中FZ呈沙漏形态, 超高强钢1700MS焊接过程发生了马氏体回火转变, 在SCHAZ中形成了大量粒状的回火马氏体,其尺寸 和数量随着远离FZ中心明显降低。

焊接接头存在严重的软化现象,其最大硬度为 609 HV(FZ)、最小硬度为321 HV(SCHAZ),后者仅 为前者硬度的52.71%,该现象与SCHAZ中发生的马 氏体回火转变有关,回火转变程度越高,硬度越低。

SCHAZ的马氏体回火是导致焊接接头力学性能降低的主要原因,受其影响焊接接头两侧形成了中间软(热影响区)、两边硬(焊缝区及母材)的不均匀组织结构,导致接头在受力过程中力学性能降低。同时,增加焊接速度可降低 SCHAZ 的回火程度和宽度,从而

第 60 卷第 17 期/2023 年 9 月/激光与光电子学进展

研究论文

提升接头的力学性能,其中6.9 m/min焊接速度时的 抗拉强度最高,为母材的85.0%。

参考文献

- Zhao J W, Jiang Z Y. Thermomechanical processing of advanced high strength steels[J]. Progress in Materials Science, 2018, 94: 174-242.
- [2] 翟战江,赵琳,彭云,等. DP980 钢激光焊接接头的低 周疲劳性能[J]. 中国激光, 2021, 48(18): 1802003.
 Zhai Z J, Zhao L, Peng Y, et al. Low cycle fatigue behavior of laser welded DP980 steel joints[J]. Chinese Journal of Lasers, 2021, 48(18): 1802003.
- [3] 李永兵,马运五,楼铭,等.轻量化薄壁结构点连接技术研究进展[J].机械工程学报,2020,56(6):125-146.
 Li Y B, Ma Y W, Lou M, et al. Advances in spot joining technologies of lightweight thin-walled structures
 [J]. Journal of Mechanical Engineering, 2020, 56(6): 125-146.
- [4] Cheah L W. Cars on a diet: the materials and energy impacts of passenger vehicle weight reductions in the U.S
 [D]. Massachusetts: Massachusetts Institute of Technology, 2010.
- [5] 李永兵,马运五,楼铭,等. 轻量化多材料汽车车身连接技术进展[J]. 机械工程学报, 2016, 52(24): 1-23.
 Li Y B, Ma Y W, Lou M, et al. Advances in welding and joining processes of multi-material lightweight car body[J]. Journal of Mechanical Engineering, 2016, 52 (24): 1-23.
- [6] Tolouei R, Titheridge H. Vehicle mass as a determinant of fuel consumption and secondary safety performance [J]. Transportation Research Part D: Transport and Environment, 2009, 14(6): 385-399.
- [7] 王艳杰,赵琳,彭云,等.中锰汽车钢激光焊接焊缝组 织与韧性[J].中国激光,2022,49(8):0802021.
 Wang Y J, Zhao L, Peng Y, et al. Microstructure and toughness of laser welding seam of medium Manganese automobile steel[J]. Chinese Journal of Lasers, 2022,49 (8):0802021.
- [8] 林文虎,吴岳,李芳,等.振镜扫描激光焊接QP1180高
 强钢的组织和性能研究[J].中国激光,2022,49(22):
 2202015.

Lin W H, Wu Y, Li F, et al. Microstructure and mechanical properties of welded joints of QP1180 ultra high strength steel using oscillation scannin[J]. Chinese Journal of Lasers, 2022, 49(22): 2202015.

 [9] 王瑜,舒乐时,耿韶宁,等.汽车车身激光焊接技术的 现状与发展趋势[J].中国激光,2022,49(12):1202004.
 Wang Y, Shu L S, Geng S N, et al. Status and development trend of laser welding technology for the automotive body[J]. Chinese Journal of Lasers, 2022, 49 (12): 1202004.

- [10] Fonstein N. Martensitic sheet steels[M]//Advanced high strength sheet steels. Cham: Springer, 2015: 259-274.
- [11] Keeler S, Kimchi M, Mooney P J. Advanced highstrength steels application guidelines version 6.0[EB/ OL]. [2022-07-19]. http://www.yunzhan365.com/basic/ 301-314/62293821.html.
- [12] Tamizi M, Pouranvari M, Movahedi M. Welding metallurgy of martensitic advanced high strength steels during resistance spot welding[J]. Science and Technology of Welding and Joining, 2017, 22(4): 327-335.
- [13] Pouranvari M, Sobhani S, Goodarzi F. Resistance spot welding of MS1200 martensitic advanced high strength steel: microstructure-properties relationship[J]. Journal of Manufacturing Processes, 2018, 31: 867-874.
- [14] Varbai B, Sommer C, Szabó M, et al. Shear tension strength of resistant spot welded ultra high strength steels[J]. Thin-Walled Structures, 2019, 142: 64-73.
- [15] 贺地求,刘杭琪,赖瑞林.MS1400/DP980钢的电阻点 焊的工艺性能分析[J].焊接学报,2018,39(4):104-108,133.
 He D Q, Liu H Q, Lai R L. Analysis on resistance spot welding process performance of MS1400 and DP980[J]. Transactions of the China Welding Institution, 2018, 39 (4):104-108,133.
- [16] Zhao Y Y, Zhang Y S, Hu W. Effect of welding speed on microstructure, hardness and tensile properties in laser welding of advanced high strength steel[J]. Science and Technology of Welding and Joining, 2013, 18(7): 581-590.
- [17] Rong Y M, Wang L, Wu R L, et al. Visualization and simulation of 1700MS sheet laser welding based on threedimensional geometries of the weld pool and keyhole[J]. International Journal of Thermal Sciences, 2022, 171: 107257.
- [18] Hernandez V H B, Nayak S S, Zhou Y. Tempering of martensite in dual-phase steels and its effects on softening behavior[J]. Metallurgical and Materials Transactions A, 2011, 42(10): 3115-3129.
- [19] Biro E, McDermid J R, Vignier S, et al. Decoupling of the softening processes during rapid tempering of martensitic steel[J]. Materials Science and Engineering: A, 2014, 615: 395-404.
- [20] Easterling K E. Modelling the weld thermal cycle and transformation behaviour in the heat affected zone[M]// Mathematical modelling of weld phenomena. Cerjak H, Easterling K E. London: The Institute of Materials, 1993.